skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lim, Ee-Peng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of representation learning for multiple types of entities in a co-ordered network where order relations exist among entities of the same type, and association relations exist across entities of different types. The key challenge in learning co-ordered network embedding is to preserve order relations among entities of the same type while leveraging on the general consistency in order relations between different entity types. In this paper, we propose an embedding model, CO2Vec, that addresses this challenge using mutually reinforced order dependencies. Specifically, CO2Vec explores indirect order dependencies as supplementary evidence to enhance order representation learning across different types of entities. We conduct extensive experiments on both synthetic and real world datasets to demonstrate the robustness and effectiveness of CO2Vec against several strong baselines in link prediction task. We also design a comprehensive evaluation framework to study the performance of CO2Vec under different settings. In particular, our results show the robustness of CO2Vec with the removal of order relations from the original networks. 
    more » « less
  2. Learning the dependency relations among entities and the hierarchy formed by these relations by mapping entities into some order embedding space can effectively enable several important applications, including knowledge base completion and prerequisite relations prediction. Nevertheless, it is very challenging to learn a good order embedding due to the existence of partial ordering and missing relations in the observed data. Moreover, most application scenarios do not provide non-trivial negative dependency relation instances. We therefore propose a framework that performs dependency relation prediction by exploring both rich semantic and hierarchical structure information in the data. In particular, we propose several negative sampling strategies based on graph-specific centrality properties, which supplement the positive dependency relations with appropriate negative samples to effectively learn order embeddings. This research not only addresses the needs of automatically recovering missing dependency relations, but also unravels dependencies among entities using several real-world datasets, such as course dependency hierarchy involving course prerequisite relations, job hierarchy in organizations, and paper citation hierarchy. Extensive experiments are conducted on both synthetic and real-world datasets to demonstrate the prediction accuracy as well as to gain insights using the learned order embedding. 
    more » « less
  3. The knowledge of all occupied and unoccupied trips made by selfemployed drivers are essential for optimized vehicle dispatch by ride-hailing services (e.g., Didi Dache, Uber, Lyft, Grab, etc.). However, vehicles’ occupancy status is not always known to service operators due to adoption of multiple ride-hailing apps. In this paper, we propose a novel framework, Learning to INfer Trips (LINT), to infer occupancy of car trips by exploring characteristics of observed occupied trips. Two main research steps, stop point classification and structural segmentation, are included in LINT. In the first step, we represent a vehicle trajectory as a sequence of stop points, and assign stop points with pick-up, drop-off, and intermediate labels thus producing a stop point label sequence. In the second step, for structural segmentation, we further propose several segmentation algorithms, including greedy segmentation (GS), efficient greedy segmentation (EGS), and dynamic programming-based segmentation (DP) to infer occupied trip from stop point label sequences. Our comprehensive experiments on real vehicle trajectories from self-employed drivers show that (1) the proposed stop point classifier predicts stop point labels with high accuracy, and (2) the proposed segmentation algorithm GS delivers the best accuracy performance with efficient running time. 
    more » « less